LaplaceX 
<< back to homepage
normal text :: links :: visited links :: active links

description TI-92 TI-92+/TI89
file type
*.92p
*.92p
compatible yes yes
Dirac Impulse (d(t)) supported supported
time delay in transfer function supported supported
parametric functions supported not supported
download
laplacex.zip (18k) 

LaplaceX v.2.3: Calculate Laplace and Inverse Laplace Transforms.

what's new:

  • irrational poles and zeros supported
  • Dirac Impulse (d(t)) supported

version history:

  • LaplaceX v.2.3:
    Dirac Impulse (d(t))
    supported.
  • LaplaceX v.1.2:
    Calculate Lapace and Inverse Laplace Transform of a F(s).
    Irrational poles and zeros supported.
  • LaplaceX v.1.1:
    Calculate Lapace and Inverse Laplace Transform of a F(s).
    A bug of LaplaceX v.1.0 fixed.
  • LaplaceX v.1.0:
    Calculate Lapace and Inverse Laplace Transform of a F(s).
    A bug of LaplaceX beta fixed, but new bug created (InvLapX not support symbolic functions).
  • LaplaceX beta:
    Calculate Lapace and Inverse Laplace Transform of a F(s).
    Because of a bug, InvLapX not support not integer delays.

Usage:

  • mode requirements:
    • Angle = RADIAN
    • Complex Format = RECTANGULAR
  • laplacex(f(t))
    Only ONE GLOBAL u(t-delay) is supported (image 1):
    • ex: laplacex(sin(3•t)) return 3/(s^2+9)
    • ex: laplacex(sin(3•(t-5))•u(t-5)) return (3/(s^2+9)•e^(-5•s)
    • ex: laplacex(sin(3•(t-5))•u(t-5)+u(t-7) return error message because
      sin(3•(t-5))•u(t-5)+u(t-7) has more than one u(t-delay) function
  • invlapx(f(s))
    Only ONE GLOBAL delay is supported (image 1):
    • ex: invlapx((3/(s^2+9))•e^(-5•s)) return sin(3t)
    • ex: invlapx((3/(s^2+9)•e^(-5•s)) return sin(3•(t-5))•u(t-5)
    • ex: invlapx((3/s)e^(-5•s)+3/s^2) return wrong result because the delay e^(-5•s) is not global
  • laplacex(•) and invlapx(•) support symbolic functions but the result can be print in a wrong manner (image 2):
    • ex: invlapx((w/(s^2+w^2))e^(-d•s))
      return
      sin((t-d)|w|)•u(t-d)•sign(w)
      and you must execute ans(1)|w>0 to have
      sin(w(t-d))•u(t-d)
    • ex: invlapx((w/(s^2+w^2))e^(-d•s)) return a complex expression, you must
      1. execute ans(1)|w>0
      2. execute expand(ans(1),w)
      to have sin(w(t-5))•u(t-5)

 image 1

 image 2
   
Copyright © Gianluca Troiani - designed for Internet Explorer 4.0 800x600 pxl

 92BROTHERS 
[home] [about TI-92] [TI-92 & PC/Mac] [programs] [ACST] [join 92BROTHERS] [disclaimer] [e-mail] ••••• [webmaster]